next up previous contents
Next: Cusp conditions Up: Three-body Previous: Three-body Derivatives   Contents

Derivatives of the local energy

It is very simple to evaluate the terms appearing in B.5 and B.6 in fact using B.29 and B.28 and considering only the $ m$ orbital dependent by the parameter $ a$ we obtain:
$\displaystyle \partial_a \vec{\nabla}_k \ln U$ $\displaystyle =$ $\displaystyle \sum_{j}\sum_{n} \lambda_{mn} \partial_a \vec{\nabla}_k \phi_m(r_...
...\sum_{j}\sum_{n} \lambda_{nm} \vec{\nabla}_k \phi_n(r_k) \partial_a \phi_m(r_j)$  
$\displaystyle \partial_a \nabla^2_k \ln U$ $\displaystyle =$ $\displaystyle \sum_{j}\sum_{n} \lambda_{mn} \partial_a \nabla^2_k \phi_m(r_k) \...
... + \sum_{j }\sum_{n} \lambda_{nm} \nabla^2_k \phi_n(r_k) \partial_a \phi_m(r_j)$  



Claudio Attaccalite 2005-11-07