

lorenzo.sponza@onera.fr

Exciton interference in hexagonal boron nitride

Preprint available:

¹ Laboratoire d'étude des microstructures (LEM), ONERA - CNRS, Châtillon, France

² Centre Interdisciplinaire de Nanoscience de Marseille, Aix Marseille University - CNRS, Marseille, France

ONERA

E FRENCH AEROSPACE L

High-accuracy electron energy loss (1)

Single-particle band structure: G₀W₀ at LDA

gap	LDA	G_0W_0
direct at Γ	6.42	8.43
indirect $(\approx K \to M)$	4.73	5.79
smallest optical (M)	4.46	6.28

GW-BSE Excitonic spectra and dispersion

An additional **shift of 0.4 eV** to align to experiments for the lack of self-consistency in GW.

The GW-BSE dispersion of the loss function **perfectly reproduces** the experimental dispersion of the peak.

and mnimum at q=8q0

the **dielectric function**.

Answer by decomposing the spectral intensity in contributions from the IP-transitions.

GW-BSE spectra along *FK*

