next up previous contents
Next: How to evaluate pressure Up: Coulomb Interactions in periodic Previous: Ewald Sums   Contents

Forces with finite variance in periodic systems

The method present in section 1.1.1 can be easily generalized to periodic systems. It is sufficient use an auxiliary periodic function $ \tilde \Psi$ with the same behavior of 1.12 close to nuclei. We have used the following form:
$\displaystyle \tilde \Psi_{PBC}$ $\displaystyle =$ $\displaystyle Q_{PBC} \Psi_T$  
$\displaystyle Q^\nu_{PBC}$ $\displaystyle =$ $\displaystyle Z_A \sum_{i=1}^{N_{elect}} \frac{ \frac{L}{2 \pi}\sin\left ( \frac{2 \pi}{L} ( x_\nu-R_A^\nu ) \right)}{r'_{iA}}$  

where $ r'_{iA}$ is the periodic distance between the nucleus $ A$ and the electron $ i$ :

$\displaystyle r'_{iA} = \frac{L}{\pi}\sqrt{\sin^2\left ( \frac{ \pi}{L} ( x_i^1...
... x_i^2-R^2_A ) \right) + \sin^2\left ( \frac{ \pi}{L} ( x_i^3-R^3_A ) \right)}.$ (4.18)

Notice that $ \Psi_{PBC}$ is a periodic function because we are using a periodic trial wave-function $ \Psi_T$ (see section 4.1.2). This auxiliary function $ \Psi_{PBC}$ removes the divergence in the bare force and it is consistent with the periodicity of the system. At variance of the case without periodic boundary conditions $ \nabla^2 Q_{PBC}$ does not cancel exactly the term coming from the derivative of the ion-electron potential. Therefore we have to included both the Laplacian of the $ Q_{PBC}$ and the derivatives of the ion-electron potential in the calculation of the forces. More precisely the expression we used for the force is:

$\displaystyle \tilde F^\nu= F^\nu_{bare} - \frac{1}{2} \nabla^2 Q^\nu_{PBC} - \frac {\vec{\nabla}Q_{PBC}^\nu \vec{\nabla}\Psi _T }{\Psi_T}$ (4.19)

where:
$\displaystyle \nabla^\mu_i Q^\nu_{PBC}$ $\displaystyle =$ $\displaystyle Z_A \frac{2 \pi^2}{L^2} \frac{\sin(\frac {2 \pi x_i^\nu}{L}) \sin...
... \delta_{\mu,\nu} Z_A \frac{2 \pi }{L}\frac{\cos(\frac {2 \pi x_i^\nu}{L})}{r'}$  
$\displaystyle \nabla_i^2 Q^\nu_{PBC}$ $\displaystyle =$ $\displaystyle Z_A \sum_{\mu =1,3} -\frac{\pi^2}{L^2} \frac{\sin(\frac{2 \pi x^\...
...t ) \cos \left (\frac{\pi x_i^\mu}{L} \right ) \right]^2 \frac{1}{r'^2} \right.$  
  $\displaystyle -$ $\displaystyle \left. \cos^2 \left (\frac{\pi x_i^\mu}{L} \right )+\sin^2\left (\frac{\pi x_i^\mu}{L} \right) \right \} \frac{1}{r'^3}$  
  $\displaystyle -$ $\displaystyle 2 Z_A \frac{\pi^2}{L^2} \left [-\sin \left (\frac{2 \pi x_i^\nu}{...
... \cos \left (\frac{2 \pi x_i^\nu}{L} \right) \frac{1}{r'^2}\right] \frac{1}{r'}$  


next up previous contents
Next: How to evaluate pressure Up: Coulomb Interactions in periodic Previous: Ewald Sums   Contents
Claudio Attaccalite 2005-11-07