next up previous contents
Next: About this document ... Up: thesis Previous: Error Analysis due to   Contents

Bibliography

1
S. J. Chakravorty S. R. Gwaltney E. R. Davidson F. A. Parpia and C. F. Fischer.
Ground state correlation energies for atomic ions with 3 to 18 electrons.
Phys. Rev. A, 47:3649, 1993.

2
M. Casula S. Sorella.
Geminal wave functions with jastrow correlation: A first application to atoms.
J. Chem. Phys., 119(13):6500, 2003.

3
K. Muller-Dethlefs J. B. Peel.
Calculations on the jahn teller configurations of the benzene cation.
J. Chem. Phys., 111:10550, 1999.

4
M. S. Deleuze L. Cleas E. S. Kryachko and J.P. Francois.
Benchmark theoretical study of the ionization threshold of benzene and oligoacenes.
J. Chem. Phys., 119:3106, 2003.

5
N. C. Holmes M. Ross and W. J. Nellis.
Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen.
Phys. Rev. B, 52:15835, 1995.

6
I.F. Silvera and V.V. Goldman.
The isotropic intermolecular potential for $ h_2$ and $ d_2$ in the solid and gas phase.
J. Chem. Phys., 69:1, 1978.

7
M.D. Dewing.
Monte Carlo Methods: Application to Hydrogen Gas
and Hard Spheres
.
PhD thesis, Michigan Technological University, 1993.

8
D. M. Ceperley C. Pierleoni and M. Holzmann.
Coupled electron ionmontecarlo calculations ofatomic hydrogen.
Phys. Rev. Lett., 93(14):146402, 2004.

9
W. M. C. Foulkes L. Mitas R. J. Needs and G. Rajagopal.
Quantum monte carlo simulations of solids.
Rev. Mod. Phys., 73:33, 2001.

10
M. P. Nightingale and C. J. Umrigar.
Quantum Monte Carlo Methods in Physics and Chemistry, volume 525.
Nato Science Series C:Mathematical and Physical Sciences, 1999.

11
W.A. Lester B.L. Hammond and P.J. Reynolds.
Monte Carlo Methods in Ab Initio Quantum Chemistry,.
World Scientific, 1994.

12
D. M. Ceperley and B.J. Alder.
Ground state of the electron gas by a stochatic method.
Phys. Rev. Lett., 45:556, 1980.

13
C. Attaccalite S. Moroni P. Gori-Giorgi and G.B. Bachelet.
Correlation energy and spin polarization in the 2d electron gas.
Phys. Rev. Lett., 88:256601, 2002.

14
D.M. Ceperley.
Path integrals in the theory of condensed helium.
Rev. Mod. Phys., 67:279, 1995.

15
M. Casula C. Attaccalite and S. Sorella.
Correlated geminal wave function for molecules: An efficient resonating valence bond approach.
Journal. Chem. Phys., 121:7110, 2004.

16
C. Filippi and C. J. Umrigar.
Multiconfiguration wave functions for quantum monte carlo calculations of first row diatomic molecules.
J. Chem. Phys., 105:123, 1996.

17
W. M. C. Foulkes L. Mitas R. J. Needs and G. Rajagopal.
Quantum monte carlo simulations of solids.
Rev. Mod. Phys., 73:33, 2001.

18
M. Calandra and S. Sorella.
Numerical study of the two dimensional heisemberg model by green function monte carlo at fixed number of walkers.
Phys. Rev. B, 1998.

19
Casula M. Yunoki S. Attaccalite C. Sorella S.
Resonating valence bond wave function: from lattice models to realistic systems.
Phys. Rev. Lett., 169:386, 2005.

20
H. Mao and R. J. Hemley.
Ultrahigh-pressure transitions in solid hydrogen.
Rev. Mod. Phys., 66:671, 1994.

21
E. Schwegler T.Ogitzu S. A. Bonev and G. Galli.
A quantum fluid of metallic hydrogen suggested by first principles calculations.
Nature, 431:669, 2004.

22
J. Kohanoff S. Scandolo S. de Gironcoli and E. Tosatti.
Dipole-quadrupole interactions and the nature of phase iii of compressed hydrogen.
Phys. Rev. Lett., 83(20):4097, 1999.

23
V. Natoli R. M. Martin and D.M. Ceperley.
Crystal structure of atomic hydrogen.
Phys. Rev. Let., 70:1952, 1993.

24
N. W. Ashcroft.
The hydrogen liquids.
J. Phys. Condens. Matter, 12:129, 2000.

25
N. W. Ashcroft E. Babaev, A. Sudbø .
Observability of a projected new state of matter: a metallic superfluid.
2005.

26
L. Mitas R. J. Needs W. M. C. Foulkes and G. Rajagopal.
Quantum monte carlo simulations of solids.
Rev. Mod. Phys., 73:33, 2001.

27
N. Metropolis A.W. Rosenbluth M.N. Rosenbluth A.N. Teller and E. Teller.
Equation of state calculations by fast computing machines.
J. Chem. Phys., 21:1078, 1953.

28
J.J. Sakurai.
Modern Quantum Mechanics.
Addison-Wesley Publishing Company Inc., 1994.

29
R. Assaraf and M. Caffarel.
Zero-variance principle for monte carlo algorithms.
Phys. Rev. Lett., 83:4682, 1999.

30
R. Assaraf and M. Caffarel.
Computing forces with quantum monte carlo.
J. Chem. Phys., 113:4028, 2000.

31
R. Assaraf and M. Caffarel.
Zero-variance zero-bias principle for observables in quantum monte carlo: Application to forces.
J. Chem. Phys., 119:10536, 2003.

32
A. J. Coleman.
Structure of fermion density matrices.
Rev. Mod. Phys., 35:668, 1963.

33
B. Weiner and O. Goscinski.
Calculation of optimal antisymmetrized geminal power (projected bcs) functions and their associated excitation spectrum.
Phys. Rev. A, 22:2374, 1980.

34
A. J. Coleman.
Spin contamination in quantum monte carlo wave functions.
J. Math. Phys., 13:214, 1972.

35
Steven G. Louie X. W. Wang Jing ZhuB and S. Fahy.
Magnetic structure and equation of state of bcc solid hydrogen:a variational quantum monte carlo study.
Phys. Rev. Lett., 65(19):2414, 1990.

36
W. Kohn E. Krotscheck and G. X. Qian.
Theory of inhomogeneous quantum systems. iv. variational calculations of metal surfaces.
Phys. Rev. B, 32:5693, 1985.

37
D. M. Ceperley C. Pierleoni Holzmann M. and K. Esler.
Backflow correlations for the electron gas and metallic hydrogen.
Phys. Rev. E, 68:046707, 2003.

38
S.G. Louise S. Fahy, X.W. Wang.
Variational quantum monte carlo nonlocal pseudopotential approach to solids: Formulation and application do diamond, graphite, and silicon.
Phys. Rev. B, 42:3503, 1990.

39
C. Filippi C. J. Huang and C. J. Umrigar.
Spin contamination in quantum monte carlo wave functions.
Journal. Chem. Phys., 108(21):8838, 1998.

40
M. Snajdr. S.M. Rothstein.
Are properties derived from variance-optimized wave functions generally more accurate? monte carlo study of non-energy-related properties of h2, he, and lih.
J. Chem. Phys., 112:4935, 2000.

41
D. Bressanini et al.
Robust wave function optimization procedures in quantum monte carlo methods.
J. Chem. Phys., 116:5345, 2002.

42
F.J. Galvez et al.
Mol. Phys., 17:627, 2001.

43
anf J. W. Wilkins C.J. Umrigar, K. G. Wilson.
Optimized trial wave functions for quantum monte carlo calculations.
Phys. Rev. Lett., 60:1719, 1988.

44
P. R. C. Kent R. J. Needs and G. Rajagopal.
Monte carlo energy and variance-minimization techniques for optimizing many-body wave functions.
Phys. Rev. B, 59:12344, 1999.

45
Xi Lin Hongkai Zhang and Andrew M. Rappe.
Optimization of quantum monte carlo wave functions using analytical energy derivatives.
J. Chem. Phys., 112(6):2650, 2000.

46
F. Schautz and C. Filippi.
Optimized jastrow-slater wave functions for ground and excited states: Application to the lowest states of ethene.
J. Chem. Phys., 120:10931, 2004.

47
A. Harju, B. Barbiellini, S. Siljamaki, R. M. Nieminen, and G. Ortiz.
Stochastic gradient approximation: An efficient method to optimize many body wave functions.
Phys. Rev. Lett., 79:1173, 1997.

48
S. Tanaka.
Structural optimization in variational quantum monte carlo.
J. Chem. Phys., 100:7416, 1994.

49
S. Sorella.
Stochastic reconfiguration.
Phys. Rev. Lett., 64:024512, 2001.

50
S. Sorella.
Wave function optimization in Variational Monte Carlo.
Phys. Rev. B, 71:241103(R), 2005.

51
L Sorella, S Capriotti.
Green function monte carlo with stochastic reconfiguration: An effective remedy for the sign problem.
Phys. Rev. B, 61:2599, 2000.

52
C. Filippi and C. J. Umrigar.
Correlated sampling in quantum monte carlo: A route to forces.
Phys. Rev. B Rapid Communications, 61:16291, 2000.

53
M.P. Nightingale C. J. Umrigar and K.J Runge.
A diffusion monte carlo algorithm with very small time-step errors.
J. Chem. Phys., 99:2865, 1998.

54
R. Car and M. Parrinello.
Unified approach for molecular dynamics and density-functional theory.
Phys. Rev. Lett., 55:2417, 1985.

55
M. Mella M. Casalegno and A. M. Rappe.
Computing accurate forces in quantum monte carlo using pulay's corrections and energy minimization.
J. Chem. Phys., 118:7193, 2003.

56
M. Mella M. Won Lee and A. M. Rappe.
Electronic quantum monte carlo calculations of atomic forces, vibrations and anharmonicities.
2005.

57
S. Baroni S. De Palo, S. Moroni.
Derivatives of the fixed-node energy.
2001.

58
C. J. Umrigar and C. Filippi.
Energy and variance optimization of many-body wave functions.
Phys. Rev. Lett., 94:150201, 2005.

59
S. J. Chakravorty S. R. Gwaltney E. R. Davidson F. A. Parpia and C. F. Fischer.
Ground-state correlation energies for atomic ions with 3 to 18 electrons.
Phys. Rev. A, 47:3649, 1993.

60
D. Feller C. M. Boyle and E. R. Davidson.
One-electron properties of several small molecules using near hartree fock limit basis sets.
J. Chem. Phys., 86:3424, 1987.

61
H. Huang and Z. Cao.
A novel method for optimizing quantum monte carlo wave functions.
J. Chem. Phys., 104:200, 1996.

62
Srinivasan Parthiban and J.M.L. Martin.
Fully ab initio atomization energy of benzene via weizmann-2 theory.
J. Chem. Phys., 115:2051, 2001.

63
W. C. Ermler and C. W. Kern.
Properties of the benzene molecule near the hartree-fock limit.
J. Chem. Phys., 58:3458, 1973.

64
J.C. Grossman and L. Mitas.
Efficient quantum monte carlo energies for molecular dynamics simulation.
Phys. Rev. Lett., 94:56403, 2005.

65
D.R.Garmer and J.B. Anderson.
Quantum chemistry by random walk: Methane.
J. Chem. Phys., 86:4025, 1987.

66
ShihI Lu.
Accurate atomization energies and dipole moments from ornstein uhlenbeck diffusion quantum monte carlo calculations for small first row polyatomic molecules.
J. Chem. Phys., 118:9528, 2003.

67
A. Luchow and D. Feller J. B. Anderson.
Improved estimates of the total correlation energy in the ground state of the water molecule.
J. Chem. Phys., 106:7706, 1997.

68
J. M. L. Martin.
Chem. Phys. Lett., 303:399, 1999.

69
I. Røeggen.
Derivation of an extended geminal model.
J. Chem. Phys., 79:5520, 1983.

70
I. Røeggen and J. Almlof.
Interatomic potential for the x(1)sigma(+)(g) state of be-2.
Int. J. Quantum. Chem., 60:453, 1996.

71
P. Horsch.
Correlation effects on bond alternation in polyacetylene.
Phys. Rev. B, 24:7351, 1981.

72
D. Baeriswyl and K. Maki.
Electron correlations in polyacetylene.
Phys. Rev. B, 31:6633, 1985.

73
L. Pauling.
The nature of the chemical bond, page 204.
Third edition, Cornell University Press, Ithaca, New York.

74
D. Feller and D. A. Dixon.
A monte carlo study of titrating polyelectrolytes.
J. Chem. Phys., 104:3048, 2000.

75
P. J. Linstrom and W. G. Mallard, editors.
NIST Chemistry Webbook, NIST Sandard Reference Database.
National Institute of Standards and Technology, Gaithersburg, 2001.

76
F.H. Zong C. Lin and D.M. Ceperley.
Twist-averaged boundary conditions in continuum quantum monte carlo algorithms.
Phys. Rev. E, 64:16702, 2001.

77
G. Ortiz and P. Ballone.
Correlation energy, structure factor, radial distribution function, and moment distribution of the spin-polarized uniform electron gas.
Phys. Rev. B, 50(3):1391, 1994.

78
P.J. Steinbach and B.R. Brooks.
New sperichal cutoff methods for long range forces in macromoleculer simulation.
J. Comp. Chem., 15:667, 1994.

79
P.P. Ewald.
Die berechnung optischer und elektrostatischer gitterpotentiale.
Ann. Phys., 64:253, 1921.

80
D. Frenkel and B. Smit.
Understanding Molecular Simulation: From Algorithms to Applications.
Academic Press: A division of Harcourt, Inc., 1996.

81
O.H. Martin and R.M. Martin.
Quantum mechanical thoery of stress and force.
Phys. Rev. B, 32:3780, 1985.

82
J.M. Haile.
Molecular Dynamics Simulation: Elementary Methods.
A Wiley Interscience Publication, 1992.

83
F. A. Lindemann.
Phys. Z, 11:609, 1910.

84
J.G. Pasta E. Fermi and S.M. Ulam.
Studies of non-linear problems.
LASL Report LA-1940, 1955.

85
I. Stich L. Mitas, J. Grossman and J. Tobik.
Silicon clusters of intermediate size: Energetics, dynamics and thermal effects.
Phys. Rev. Lett., 84:1479, 2000.

86
S. Chiesa and D. M. Ceperley S. Zhang.
Accurate, efficient, and simple forces computed with quantum monte carlo methods.
Phys. Rev. Lett., 94:036404, 2005.

87
T. Schneider and E. Stoll.
Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions.
Phys. Rev. B, 17(3):1302, 1978.

88
J. M. Wozniak J. A. Izagiurre, D. P. Caterello and R. D. Skeel.
Langevin stabilization of molecular dynamics.
J. Chem. Phys., 114(5):2090, 2001.

89
F. R. Krajewski and M. Parrinello.
Linear scaling electronic structure calculations and accurate sampling with noisy forces.
2005.

90
Hannes Risken.
The Fokker-Planck Equation.
Springer, 1984.

91
C. L. Brooks A. Brunger and M. Karplus.
Stochastic boundary conditions for molecular dynamics simulations of st2 water.
Chem. Phys. Lett., 105:495, 1984.

92
W. F. van Gunsteren and H. J. C. Berendsen.
Molec. Phys., 45:637, 1982.

93
J. A. Izaguirre R.D. Skeel.
An impulse integrator for langevin dynamics.
Mol. Phys., 100(24):3885, 2002.

94
G. Dahlquist and A. Bjorck.
Numerical Methods.
Englewood Cliffs, NJ: Prentice-Hall, 1974.

95
C. L. Brooks III M. Berkowitz and S.A. Adelman.
Generalized langevin theory for many-body problems in chemical dynamics: Modelling of solid and liquid state response functions.
J. Chem. Phys., 72:3889, 1980.

96
F. Tassone F.Mauri and R. Car.
Acceleration schemes for ab initio molecular-dynamics simulations and electronic-structure calculations.
Phys. Rev. B, 50:15, 1994.

97
M.C. Payne M.P. Teter D. C. Allan T.A. Arias J.D. Joannopoulos.
Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients.
Rev. Mod. Phys., 64(4):1045, 1992.

98
M.P. Allen and D.J. Tildesley.
Computer Simulation of Liquids.
Oxford Univeristy Press, 1991.

99
D. Hohl V. Natoli D. M. Ceperlay and R.M. Martin.
Molecular dissosation in dense hydrogen.
Phys. Rev. Lett., 71:541, 1993.

100
M. V. Sadovskii.
Superconductivity and localization.
Rev. Mod. Phys., 0:0, 1999.

101
Sadovskii MV.
Superconductivity and localization.
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 282:226, 1997.

102
Daniel Rohe and Walter Metzner.
Pseudogap at hot spots in the two-dimensional hubbard model at weak coupling.
Phys. Rev. B, 71:115116, 2005.

103
C.N. Yang.
Concept of off-diagonal long-range order and quantum phase of liquid he and of superconductors.
Rev. Mod. Phys., 34:694, 1962.

104
S. De Palo F. Rapisarda and Gaetano Senatore.
Excitonic condensation in a symmetric electron-hole bilayer.
Phys. Rev. Lett., 88:206401, 2002.

105
P Capello M Becca F Fabrizio M Sorella S Tosatti E.
Variational description of mott insulators.
Phys. Rev. Lett., 94(2):026406, 2005.

106
S. Sorella G. Martins F. Becca C. Gazza L. Capriotti A. Parola and E. Dagotto.
Superconductivity in the two-dimensional t-j model.
Phys. Rev. Lett, 88:117002, 2002.

107
T.A. Maier M. Jarrell T.C. Schulthess P. R. C. Kent and J.B. White.
A systematic study of superconductivity in the 2d hubbard model.
2005.

108
P. R. C. Kent R. Q. Hood A. J. Williamson R. J. Needs W. M. C. Foulkes and G. Rajagopal.
Finite-size errors in quantum many-body simulations of extended systems.
Phys. Rev. B, 59:1917, 1999.

109
Bradley Efron.
The Jackknife, the Bootstrap and Other Resampling Plans.
Society for Industrial and Applied Mathematics, 1982.

110
A. J. Coleman.
J. Math. Phys., 13:214, 1972.

111
B. Mishra and T. Schlick.
The notion of error in langevin dynamics. i. linear analisys.
J. Chem. Phys., 105:299, 1996.



Claudio Attaccalite 2005-11-07