Next: About this document ...
Up: thesis
Previous: Error Analysis due to
Contents
- 1
-
S. J. Chakravorty S. R. Gwaltney E. R. Davidson F. A. Parpia and C. F. Fischer.
Ground state correlation energies for atomic ions with 3 to 18
electrons.
Phys. Rev. A, 47:3649, 1993.
- 2
-
M. Casula S. Sorella.
Geminal wave functions with jastrow correlation: A first application
to atoms.
J. Chem. Phys., 119(13):6500, 2003.
- 3
-
K. Muller-Dethlefs J. B. Peel.
Calculations on the jahn teller configurations of the benzene cation.
J. Chem. Phys., 111:10550, 1999.
- 4
-
M. S. Deleuze L. Cleas E. S. Kryachko and J.P. Francois.
Benchmark theoretical study of the ionization threshold of benzene
and oligoacenes.
J. Chem. Phys., 119:3106, 2003.
- 5
-
N. C. Holmes M. Ross and W. J. Nellis.
Temperature measurements and dissociation of shock-compressed liquid
deuterium and hydrogen.
Phys. Rev. B, 52:15835, 1995.
- 6
-
I.F. Silvera and V.V. Goldman.
The isotropic intermolecular potential for
and
in the
solid and gas phase.
J. Chem. Phys., 69:1, 1978.
- 7
-
M.D. Dewing.
Monte Carlo Methods: Application to Hydrogen Gas
and Hard
Spheres.
PhD thesis, Michigan Technological University, 1993.
- 8
-
D. M. Ceperley C. Pierleoni and M. Holzmann.
Coupled electron ionmontecarlo calculations ofatomic hydrogen.
Phys. Rev. Lett., 93(14):146402, 2004.
- 9
-
W. M. C. Foulkes L. Mitas R. J. Needs and G. Rajagopal.
Quantum monte carlo simulations of solids.
Rev. Mod. Phys., 73:33, 2001.
- 10
-
M. P. Nightingale and C. J. Umrigar.
Quantum Monte Carlo Methods in Physics and Chemistry, volume
525.
Nato Science Series C:Mathematical and Physical Sciences, 1999.
- 11
-
W.A. Lester B.L. Hammond and P.J. Reynolds.
Monte Carlo Methods in Ab Initio Quantum Chemistry,.
World Scientific, 1994.
- 12
-
D. M. Ceperley and B.J. Alder.
Ground state of the electron gas by a stochatic method.
Phys. Rev. Lett., 45:556, 1980.
- 13
-
C. Attaccalite S. Moroni P. Gori-Giorgi and G.B. Bachelet.
Correlation energy and spin polarization in the 2d electron gas.
Phys. Rev. Lett., 88:256601, 2002.
- 14
-
D.M. Ceperley.
Path integrals in the theory of condensed helium.
Rev. Mod. Phys., 67:279, 1995.
- 15
-
M. Casula C. Attaccalite and S. Sorella.
Correlated geminal wave function for molecules: An efficient
resonating valence bond approach.
Journal. Chem. Phys., 121:7110, 2004.
- 16
-
C. Filippi and C. J. Umrigar.
Multiconfiguration wave functions for quantum monte carlo
calculations of first row diatomic molecules.
J. Chem. Phys., 105:123, 1996.
- 17
-
W. M. C. Foulkes L. Mitas R. J. Needs and G. Rajagopal.
Quantum monte carlo simulations of solids.
Rev. Mod. Phys., 73:33, 2001.
- 18
-
M. Calandra and S. Sorella.
Numerical study of the two dimensional heisemberg model by green
function monte carlo at fixed number of walkers.
Phys. Rev. B, 1998.
- 19
-
Casula M. Yunoki S. Attaccalite C. Sorella S.
Resonating valence bond wave function: from lattice models to
realistic systems.
Phys. Rev. Lett., 169:386, 2005.
- 20
-
H. Mao and R. J. Hemley.
Ultrahigh-pressure transitions in solid hydrogen.
Rev. Mod. Phys., 66:671, 1994.
- 21
-
E. Schwegler T.Ogitzu S. A. Bonev and G. Galli.
A quantum fluid of metallic hydrogen suggested by first principles
calculations.
Nature, 431:669, 2004.
- 22
-
J. Kohanoff S. Scandolo S. de Gironcoli and E. Tosatti.
Dipole-quadrupole interactions and the nature of phase iii of
compressed hydrogen.
Phys. Rev. Lett., 83(20):4097, 1999.
- 23
-
V. Natoli R. M. Martin and D.M. Ceperley.
Crystal structure of atomic hydrogen.
Phys. Rev. Let., 70:1952, 1993.
- 24
-
N. W. Ashcroft.
The hydrogen liquids.
J. Phys. Condens. Matter, 12:129, 2000.
- 25
-
N. W. Ashcroft E. Babaev, A. Sudbø .
Observability of a projected new state of matter: a metallic
superfluid.
2005.
- 26
-
L. Mitas R. J. Needs W. M. C. Foulkes and G. Rajagopal.
Quantum monte carlo simulations of solids.
Rev. Mod. Phys., 73:33, 2001.
- 27
-
N. Metropolis A.W. Rosenbluth M.N. Rosenbluth A.N. Teller and E. Teller.
Equation of state calculations by fast computing machines.
J. Chem. Phys., 21:1078, 1953.
- 28
-
J.J. Sakurai.
Modern Quantum Mechanics.
Addison-Wesley Publishing Company Inc., 1994.
- 29
-
R. Assaraf and M. Caffarel.
Zero-variance principle for monte carlo algorithms.
Phys. Rev. Lett., 83:4682, 1999.
- 30
-
R. Assaraf and M. Caffarel.
Computing forces with quantum monte carlo.
J. Chem. Phys., 113:4028, 2000.
- 31
-
R. Assaraf and M. Caffarel.
Zero-variance zero-bias principle for observables in quantum monte
carlo: Application to forces.
J. Chem. Phys., 119:10536, 2003.
- 32
-
A. J. Coleman.
Structure of fermion density matrices.
Rev. Mod. Phys., 35:668, 1963.
- 33
-
B. Weiner and O. Goscinski.
Calculation of optimal antisymmetrized geminal power (projected bcs)
functions and their associated excitation spectrum.
Phys. Rev. A, 22:2374, 1980.
- 34
-
A. J. Coleman.
Spin contamination in quantum monte carlo wave functions.
J. Math. Phys., 13:214, 1972.
- 35
-
Steven G. Louie X. W. Wang Jing ZhuB and S. Fahy.
Magnetic structure and equation of state of bcc solid hydrogen:a
variational quantum monte carlo study.
Phys. Rev. Lett., 65(19):2414, 1990.
- 36
-
W. Kohn E. Krotscheck and G. X. Qian.
Theory of inhomogeneous quantum systems. iv. variational calculations
of metal surfaces.
Phys. Rev. B, 32:5693, 1985.
- 37
-
D. M. Ceperley C. Pierleoni Holzmann M. and K. Esler.
Backflow correlations for the electron gas and metallic hydrogen.
Phys. Rev. E, 68:046707, 2003.
- 38
-
S.G. Louise S. Fahy, X.W. Wang.
Variational quantum monte carlo nonlocal pseudopotential approach to
solids: Formulation and application do diamond, graphite, and silicon.
Phys. Rev. B, 42:3503, 1990.
- 39
-
C. Filippi C. J. Huang and C. J. Umrigar.
Spin contamination in quantum monte carlo wave functions.
Journal. Chem. Phys., 108(21):8838, 1998.
- 40
-
M. Snajdr. S.M. Rothstein.
Are properties derived from variance-optimized wave functions
generally more accurate? monte carlo study of non-energy-related properties
of h2, he, and lih.
J. Chem. Phys., 112:4935, 2000.
- 41
-
D. Bressanini et al.
Robust wave function optimization procedures in quantum monte carlo
methods.
J. Chem. Phys., 116:5345, 2002.
- 42
-
F.J. Galvez et al.
Mol. Phys., 17:627, 2001.
- 43
-
anf J. W. Wilkins C.J. Umrigar, K. G. Wilson.
Optimized trial wave functions for quantum monte carlo calculations.
Phys. Rev. Lett., 60:1719, 1988.
- 44
-
P. R. C. Kent R. J. Needs and G. Rajagopal.
Monte carlo energy and variance-minimization techniques for
optimizing many-body wave functions.
Phys. Rev. B, 59:12344, 1999.
- 45
-
Xi Lin Hongkai Zhang and Andrew M. Rappe.
Optimization of quantum monte carlo wave functions using analytical
energy derivatives.
J. Chem. Phys., 112(6):2650, 2000.
- 46
-
F. Schautz and C. Filippi.
Optimized jastrow-slater wave functions for ground and excited
states: Application to the lowest states of ethene.
J. Chem. Phys., 120:10931, 2004.
- 47
-
A. Harju, B. Barbiellini, S. Siljamaki, R. M. Nieminen, and G. Ortiz.
Stochastic gradient approximation: An efficient method to optimize
many body wave functions.
Phys. Rev. Lett., 79:1173, 1997.
- 48
-
S. Tanaka.
Structural optimization in variational quantum monte carlo.
J. Chem. Phys., 100:7416, 1994.
- 49
-
S. Sorella.
Stochastic reconfiguration.
Phys. Rev. Lett., 64:024512, 2001.
- 50
-
S. Sorella.
Wave function optimization in Variational Monte Carlo.
Phys. Rev. B, 71:241103(R), 2005.
- 51
-
L Sorella, S Capriotti.
Green function monte carlo with stochastic reconfiguration: An
effective remedy for the sign problem.
Phys. Rev. B, 61:2599, 2000.
- 52
-
C. Filippi and C. J. Umrigar.
Correlated sampling in quantum monte carlo: A route to forces.
Phys. Rev. B Rapid Communications, 61:16291, 2000.
- 53
-
M.P. Nightingale C. J. Umrigar and K.J Runge.
A diffusion monte carlo algorithm with very small time-step errors.
J. Chem. Phys., 99:2865, 1998.
- 54
-
R. Car and M. Parrinello.
Unified approach for molecular dynamics and density-functional
theory.
Phys. Rev. Lett., 55:2417, 1985.
- 55
-
M. Mella M. Casalegno and A. M. Rappe.
Computing accurate forces in quantum monte carlo using pulay's
corrections and energy minimization.
J. Chem. Phys., 118:7193, 2003.
- 56
-
M. Mella M. Won Lee and A. M. Rappe.
Electronic quantum monte carlo calculations of atomic forces,
vibrations and anharmonicities.
2005.
- 57
-
S. Baroni S. De Palo, S. Moroni.
Derivatives of the fixed-node energy.
2001.
- 58
-
C. J. Umrigar and C. Filippi.
Energy and variance optimization of many-body wave functions.
Phys. Rev. Lett., 94:150201, 2005.
- 59
-
S. J. Chakravorty S. R. Gwaltney E. R. Davidson F. A. Parpia and C. F. Fischer.
Ground-state correlation energies for atomic ions with 3 to 18
electrons.
Phys. Rev. A, 47:3649, 1993.
- 60
-
D. Feller C. M. Boyle and E. R. Davidson.
One-electron properties of several small molecules using near hartree
fock limit basis sets.
J. Chem. Phys., 86:3424, 1987.
- 61
-
H. Huang and Z. Cao.
A novel method for optimizing quantum monte carlo wave functions.
J. Chem. Phys., 104:200, 1996.
- 62
-
Srinivasan Parthiban and J.M.L. Martin.
Fully ab initio atomization energy of benzene via weizmann-2 theory.
J. Chem. Phys., 115:2051, 2001.
- 63
-
W. C. Ermler and C. W. Kern.
Properties of the benzene molecule near the hartree-fock limit.
J. Chem. Phys., 58:3458, 1973.
- 64
-
J.C. Grossman and L. Mitas.
Efficient quantum monte carlo energies for molecular dynamics
simulation.
Phys. Rev. Lett., 94:56403, 2005.
- 65
-
D.R.Garmer and J.B. Anderson.
Quantum chemistry by random walk: Methane.
J. Chem. Phys., 86:4025, 1987.
- 66
-
ShihI Lu.
Accurate atomization energies and dipole moments from ornstein
uhlenbeck diffusion quantum monte carlo calculations for small first row
polyatomic molecules.
J. Chem. Phys., 118:9528, 2003.
- 67
-
A. Luchow and D. Feller J. B. Anderson.
Improved estimates of the total correlation energy in the ground
state of the water molecule.
J. Chem. Phys., 106:7706, 1997.
- 68
-
J. M. L. Martin.
Chem. Phys. Lett., 303:399, 1999.
- 69
-
I. Røeggen.
Derivation of an extended geminal model.
J. Chem. Phys., 79:5520, 1983.
- 70
-
I. Røeggen and J. Almlof.
Interatomic potential for the x(1)sigma(+)(g) state of be-2.
Int. J. Quantum. Chem., 60:453, 1996.
- 71
-
P. Horsch.
Correlation effects on bond alternation in polyacetylene.
Phys. Rev. B, 24:7351, 1981.
- 72
-
D. Baeriswyl and K. Maki.
Electron correlations in polyacetylene.
Phys. Rev. B, 31:6633, 1985.
- 73
-
L. Pauling.
The nature of the chemical bond, page 204.
Third edition, Cornell University Press, Ithaca, New York.
- 74
-
D. Feller and D. A. Dixon.
A monte carlo study of titrating polyelectrolytes.
J. Chem. Phys., 104:3048, 2000.
- 75
-
P. J. Linstrom and W. G. Mallard, editors.
NIST Chemistry Webbook, NIST Sandard Reference Database.
National Institute of Standards and Technology, Gaithersburg, 2001.
- 76
-
F.H. Zong C. Lin and D.M. Ceperley.
Twist-averaged boundary conditions in continuum quantum monte carlo
algorithms.
Phys. Rev. E, 64:16702, 2001.
- 77
-
G. Ortiz and P. Ballone.
Correlation energy, structure factor, radial distribution function,
and moment distribution of the spin-polarized uniform electron gas.
Phys. Rev. B, 50(3):1391, 1994.
- 78
-
P.J. Steinbach and B.R. Brooks.
New sperichal cutoff methods for long range forces in macromoleculer
simulation.
J. Comp. Chem., 15:667, 1994.
- 79
-
P.P. Ewald.
Die berechnung optischer und elektrostatischer gitterpotentiale.
Ann. Phys., 64:253, 1921.
- 80
-
D. Frenkel and B. Smit.
Understanding Molecular Simulation: From Algorithms to
Applications.
Academic Press: A division of Harcourt, Inc., 1996.
- 81
-
O.H. Martin and R.M. Martin.
Quantum mechanical thoery of stress and force.
Phys. Rev. B, 32:3780, 1985.
- 82
-
J.M. Haile.
Molecular Dynamics Simulation: Elementary Methods.
A Wiley Interscience Publication, 1992.
- 83
-
F. A. Lindemann.
Phys. Z, 11:609, 1910.
- 84
-
J.G. Pasta E. Fermi and S.M. Ulam.
Studies of non-linear problems.
LASL Report LA-1940, 1955.
- 85
-
I. Stich L. Mitas, J. Grossman and J. Tobik.
Silicon clusters of intermediate size: Energetics, dynamics and
thermal effects.
Phys. Rev. Lett., 84:1479, 2000.
- 86
-
S. Chiesa and D. M. Ceperley S. Zhang.
Accurate, efficient, and simple forces computed with quantum monte
carlo methods.
Phys. Rev. Lett., 94:036404, 2005.
- 87
-
T. Schneider and E. Stoll.
Molecular-dynamics study of a three-dimensional one-component model
for distortive phase transitions.
Phys. Rev. B, 17(3):1302, 1978.
- 88
-
J. M. Wozniak J. A. Izagiurre, D. P. Caterello and R. D. Skeel.
Langevin stabilization of molecular dynamics.
J. Chem. Phys., 114(5):2090, 2001.
- 89
-
F. R. Krajewski and M. Parrinello.
Linear scaling electronic structure calculations and accurate
sampling with noisy forces.
2005.
- 90
-
Hannes Risken.
The Fokker-Planck Equation.
Springer, 1984.
- 91
-
C. L. Brooks A. Brunger and M. Karplus.
Stochastic boundary conditions for molecular dynamics simulations of
st2 water.
Chem. Phys. Lett., 105:495, 1984.
- 92
-
W. F. van Gunsteren and H. J. C. Berendsen.
Molec. Phys., 45:637, 1982.
- 93
-
J. A. Izaguirre R.D. Skeel.
An impulse integrator for langevin dynamics.
Mol. Phys., 100(24):3885, 2002.
- 94
-
G. Dahlquist and A. Bjorck.
Numerical Methods.
Englewood Cliffs, NJ: Prentice-Hall, 1974.
- 95
-
C. L. Brooks III M. Berkowitz and S.A. Adelman.
Generalized langevin theory for many-body problems in chemical
dynamics: Modelling of solid and liquid state response functions.
J. Chem. Phys., 72:3889, 1980.
- 96
-
F. Tassone F.Mauri and R. Car.
Acceleration schemes for ab initio molecular-dynamics simulations and
electronic-structure calculations.
Phys. Rev. B, 50:15, 1994.
- 97
-
M.C. Payne M.P. Teter D. C. Allan T.A. Arias J.D. Joannopoulos.
Iterative minimization techniques for ab initio total-energy
calculations: molecular dynamics and conjugate gradients.
Rev. Mod. Phys., 64(4):1045, 1992.
- 98
-
M.P. Allen and D.J. Tildesley.
Computer Simulation of Liquids.
Oxford Univeristy Press, 1991.
- 99
-
D. Hohl V. Natoli D. M. Ceperlay and R.M. Martin.
Molecular dissosation in dense hydrogen.
Phys. Rev. Lett., 71:541, 1993.
- 100
-
M. V. Sadovskii.
Superconductivity and localization.
Rev. Mod. Phys., 0:0, 1999.
- 101
-
Sadovskii MV.
Superconductivity and localization.
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 282:226,
1997.
- 102
-
Daniel Rohe and Walter Metzner.
Pseudogap at hot spots in the two-dimensional hubbard model at weak
coupling.
Phys. Rev. B, 71:115116, 2005.
- 103
-
C.N. Yang.
Concept of off-diagonal long-range order and quantum phase of liquid
he and of superconductors.
Rev. Mod. Phys., 34:694, 1962.
- 104
-
S. De Palo F. Rapisarda and Gaetano Senatore.
Excitonic condensation in a symmetric electron-hole bilayer.
Phys. Rev. Lett., 88:206401, 2002.
- 105
-
P Capello M Becca F Fabrizio M Sorella S Tosatti E.
Variational description of mott insulators.
Phys. Rev. Lett., 94(2):026406, 2005.
- 106
-
S. Sorella G. Martins F. Becca C. Gazza L. Capriotti A. Parola and E. Dagotto.
Superconductivity in the two-dimensional t-j model.
Phys. Rev. Lett, 88:117002, 2002.
- 107
-
T.A. Maier M. Jarrell T.C. Schulthess P. R. C. Kent and J.B. White.
A systematic study of superconductivity in the 2d hubbard model.
2005.
- 108
-
P. R. C. Kent R. Q. Hood A. J. Williamson R. J. Needs W. M. C. Foulkes and
G. Rajagopal.
Finite-size errors in quantum many-body simulations of extended
systems.
Phys. Rev. B, 59:1917, 1999.
- 109
-
Bradley Efron.
The Jackknife, the Bootstrap and Other Resampling Plans.
Society for Industrial and Applied Mathematics, 1982.
- 110
-
A. J. Coleman.
J. Math. Phys., 13:214, 1972.
- 111
-
B. Mishra and T. Schlick.
The notion of error in langevin dynamics. i. linear analisys.
J. Chem. Phys., 105:299, 1996.
Claudio Attaccalite
2005-11-07