next up previous contents
Next: Bibliography Up: thesis Previous: Determinant derivatives   Contents


Error Analysis due to finite time step in the GLE integration in a simple case

When we discretize the equation 5.13 we introduce an error due to the finite integration time step $ \tau$ . Following the idea of Ref. (111) we can evaluate this error analytically in the case of a simple harmonic oscillator. Consider the equation:

$\displaystyle x^{n+1}-(1+e^{-\lambda \tau })x^n+e^{-\lambda \tau} x^{n-1} = \frac{\tau}{\lambda}(1- e^{-\lambda \tau}) ( \omega^2 x^n +r^n).$ (E.1)

We are interested in a statistically stationary process and so we proceed to evaluate mean average energies and correlation functions as function of $ \tau$ . To do so we multiply the equation E.1 for $ x^n$ and $ x^{n-1}$ , respectively, and then take the average. We obtain the following pair of equations:
$\displaystyle \langle x^{n+1} x^{n} \rangle + \left [ \frac{\tau \omega^2 }{\la...
... ] \langle x^{n} x^{n} \rangle +e^{-\lambda \tau} \langle x^{n-1} x^{n} \rangle$ $\displaystyle =$ 0  
$\displaystyle \langle x^{n+1} x^{n-1} \rangle -(1+e^{-\lambda \tau }) \langle x...
...\lambda \tau} - 1) +
e^{-\lambda \tau} \right ] \langle x^{n-1} x^{n-1} \rangle$ $\displaystyle =$ 0  

Becuase we are interested in the equilibrium distribution, we can assume that $ \langle x^{n} x^{n-1} \rangle =\langle x^{n+1} x^{n} \rangle $ and $ \langle x^{n+1} x^{n+1} \rangle =\langle x^{n} x^{n} \rangle = \langle x^{n-1} x^{n-1} \rangle$ . Thus we have three unknown quantities $ \langle x^{n+1} x^{n} \rangle$ , $ \langle x^{n} x^{n} \rangle$ and $ \langle x^{n+1} x^{n-1} \rangle $ . To get a third relation among this quantities we square the Eq. E.1 to obtain the relation:
  $\displaystyle 2$ $\displaystyle \left [ \frac{\tau \omega^2 }{\lambda} (e^{-\lambda \tau} -1 ) - ...
...tau}) \right ] \left(1+ e^{-\lambda \tau} \right) \langle x^{n+1} x^{n} \rangle$  
  $\displaystyle +$ $\displaystyle \left [ 1 + e^{-2\lambda \tau } + \left ( \frac{\tau \omega^2 }{\...
...da \tau} )+(1+e^{-\lambda \tau}) \right )^2 \right] \langle x^{n} x^{n} \rangle$  
  $\displaystyle +$ $\displaystyle 2 e^{-\lambda \tau} \langle x^{n+1} x^{n-1} \rangle = \frac{\tau^2}{\lambda^2}(1- e^{-\lambda \tau})^2\langle r^n r^n\rangle$  

After solving this equation system we can evaluate the potential and the kinetic energy:
$\displaystyle \langle E_{pot} \rangle$ $\displaystyle =$ $\displaystyle \frac{1}{2} \omega^2 \langle x^{n} x^{n} \rangle$ (E.2)
$\displaystyle \langle E_{kin} \rangle$ $\displaystyle =$ $\displaystyle \frac{1}{2} \langle V^{n} V^{n} \rangle = \frac{1}{2} \frac{ \langle (x^{n}-x^{n-1})^2 \rangle }{\tau^2}$ (E.3)
  $\displaystyle =$ $\displaystyle \frac{1}{\tau^2} \left [ \langle x^{n} x^{n} \rangle - \langle x^{n} x^{n-1} \rangle \right]$ (E.4)

It is easy to show that in the limit of small $ \tau$ the potential and the kinetic energies converge to:
$\displaystyle \langle E_{kin} \rangle$ $\displaystyle =$ $\displaystyle \frac{1}{2} k_b T \left ( 1 + \frac{1}{4} \omega^2 \tau^2 + O(\tau^4) \right)$ (E.5)
$\displaystyle \langle E_{pot} \rangle$ $\displaystyle =$ $\displaystyle \frac{1}{2} k_b T \left ( 1 + O( \tau^2) + O(\tau^3) \right)$ (E.6)

This show that at least in this simple model the impulse integrator leads to a quadratic error in $ \tau$ in both kinetic and poterntial energy.


next up previous contents
Next: Bibliography Up: thesis Previous: Determinant derivatives   Contents
Claudio Attaccalite 2005-11-07