next up previous contents
Next: Gradients and Laplacian Up: Local Energy and its Previous: Derivatives of the Kinetic   Contents

Pairing determinant

Let us define the matrix $ A_{ij}$ as:

$\displaystyle A_{ij} = \Phi(r_i,r_j)=\sum_{l,m}{\lambda_{l,m}\phi_{l}(r_i)\phi_{m}(r_j)}$ (B.8)

where $ i$ are coordinates of spin up electrons and $ j$ of spin down electrons. For polarized system is possible extend the definition of the geminal wave-function. This generalization was first proposed by Coleman (110). In practise if $ N^\uparrow > N^\downarrow$ we can define a $ N^\uparrow x N^\uparrow$ matrix $ A_{ij}$ in the following way:
$\displaystyle A_{ij}$ $\displaystyle =$ $\displaystyle \Phi(r^\uparrow_i,r^\downarrow_j)$    for $\displaystyle j = 1,N^\downarrow$ (B.9)
  $\displaystyle =$ $\displaystyle \bar \phi_j(r_i^\uparrow)$    for $\displaystyle j=N^\downarrow+1,N^\uparrow$ (B.10)

When we move an electron to ratio between the old and the new determinant will be given for a spin down electron:

$\displaystyle \left\vert A(r_i,r'_k) \right\vert$ $\displaystyle =$ $\displaystyle \sum_i \Phi(r_i,r'_k) \left\vert A(r_i,r_k) \right\vert A_{ik}^{-1}$  
$\displaystyle \frac{\left\vert A(r_i,r'_k) \right\vert }{ \left\vert A(r_i,r_k) \right\vert }$ $\displaystyle =$ $\displaystyle \sum_i \Phi(r_i,r'_k) A_{ik}^{-1}$  
$\displaystyle \frac{\left\vert A(r_i,r'_k) \right\vert }{ \left\vert A(r_i,r_k) \right\vert }$ $\displaystyle =$ $\displaystyle \sum_i \sum_{l,m}{\lambda_{l,m} \phi_{l}(r_i)\phi_{m}(r_k')} A_{ik}^{-1}$ (B.11)

and for spin up:
$\displaystyle \left\vert A(r'_i,r_k) \right\vert$ $\displaystyle =$ $\displaystyle \sum_k \Phi(r'_i,r_k) \left\vert A(r'_i,r_k) \right\vert A_{ik}^{-1}$  
$\displaystyle \frac{\left\vert A(r'_i,r_k) \right\vert }{ \left\vert A(r'_i,r_k) \right\vert }$ $\displaystyle =$ $\displaystyle \sum_k \Phi(r'_i,r_k) A_{ik}^{-1}$  

For updating the inverse matrix $ A^{-1}$ , used here, after a move we follow the simple formula used for the Slater determinant(38) with indices that depend from the spin of the electron.

Subsections
next up previous contents
Next: Gradients and Laplacian Up: Local Energy and its Previous: Derivatives of the Kinetic   Contents
Claudio Attaccalite 2005-11-07